Degradation of o-nitrobenzoate via anthranilic acid (o-aminobenzoate) by Arthrobacter protophormiae: a plasmid-encoded new pathway.
نویسندگان
چکیده
An Arthrobacter protophormiae strain RKJ100, isolated by selective enrichment, was capable of utilizing o-nitrobenzoate (ONB(+)) as the sole carbon, nitrogen, and energy source. The degradation of ONB proceeds through an oxygen insensitive reductive route as shown by the release of ammonia in the culture medium aerobically rather than nitrite ions. Thin-layer chromatography, gas chromatography, and gas chromatography-mass spectrometry of the intermediates have shown that ONB is degraded by a two-electron reduction of the nitro moiety, yielding o-hydroxylaminobenzoate and anthranilic acid. Quantitation of the intermediates, inhibition studies, and simultaneous induction studies have shown that anthranilic acid is produced as the terminal aromatic intermediate of a catabolic energy-yielding pathway and not as a side reaction taking place concurrently which is the first such report. A plasmid of approximately 65 kb was found to be responsible for harboring genes for ONB degradation in this strain. The same plasmid also encoded resistance to cobalt ions.
منابع مشابه
Plasmid-encoded degradation of p-nitrophenol and 4-nitrocatechol by Arthrobacter protophormiae.
Arthrobacter protophormiae strain RKJ100 is capable of utilizing p-nitrophenol (PNP) as well as 4-nitrocatechol (NC) as the sole source of carbon, nitrogen and energy. The degradation of PNP and NC by this microorganism takes place through an oxidative route, as stoichiometry of nitrite molecules was observed when the strain was grown on PNP or NC as sole carbon and energy sources. The degradat...
متن کاملNew metabolic pathway for degradation of 2-nitrobenzoate by Arthrobacter sp. SPG
Arthrobacter sp. SPG utilized 2-nitrobenzoate as its sole source of carbon and energy and degraded it with accumulation of stoichiometric amounts of nitrite ions. Salicylate and catechol were detected as metabolites of the 2-nitrobenzoate degradation using high performance liquid chromatography and gas chromatography-mass spectrometry. Enzyme activities for 2-nitrobenzoate-2-monooxygenase, sali...
متن کاملNovel degradative pathway of 4-nitrobenzoate in Comamonas acidovorans NBA-10.
A Comamonas acidovorans strain, designated NBA-10, was isolated on 4-nitrobenzoate as sole carbon and energy source. When grown on 4-nitrobenzoate, it was simultaneously adapted to 4-nitrosobenzoate and 4-hydroxylaminobenzoate but not to 4-hydroxybenzoate or 4-aminobenzoate. In cell extracts with NADPH present, 4-nitrobenzoate was degraded to 4-hydroxylaminobenzoate and 3,4-dihydroxybenzoate. P...
متن کاملAnaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium.
The enzymes catalyzing the initial reactions in the anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) were studied with a denitrifying Pseudomonas sp. anaerobically grown with 2-aminobenzoate and nitrate as the sole carbon and energy sources. Cells grown on 2-aminobenzoate are simultaneously adapted to growth with benzoate, whereas cells grown on benzoate degrade 2-aminobenzoate s...
متن کاملCharacterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis.
Pseudomonas fluorescens strain KU-7 is a prototype microorganism that metabolizes 2-nitrobenzoate (2-NBA) via the formation of 3-hydroxyanthranilate (3-HAA), a known antioxidant and reductant. The initial two steps leading to the sequential formation of 2-hydroxy/aminobenzoate and 3-HAA are catalyzed by a NADPH-dependent 2-NBA nitroreductase (NbaA) and 2-hydroxylaminobenzoate mutase (NbaB), res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 267 1 شماره
صفحات -
تاریخ انتشار 2000